首页 > 运维 > 问答 > 大一线性代数思维导图,大一线性代数

大一线性代数思维导图,大一线性代数

来源:整理 时间:2024-08-27 17:25:31 编辑:黑码技术 手机版

本文目录一览

1,大一线性代数

n^3-n^2

大一线性代数

2,怎样写线性代数知识结构框图

多项式-行列式-线性方程组-矩阵-线性空间-线性变换每本书结构都不一样,谢谢

怎样写线性代数知识结构框图

3,线性代数知识

矩阵P的列向量就是P1,P2,P3 因此A=P^ A^100=P^ 其中diag

线性代数知识

4,线性代数

线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。 由于费马和笛卡儿的工作,线性代数基本上出现于十七世纪。直到十八世纪末,线性代数的领域还只限于平面与空间。十九世纪上半叶才完成了到n维向量空间的过渡 矩阵论始于凯莱,在十九世纪下半叶,因若当的工作而达到了它的顶点.1888年,皮亚诺以公理的方式定义了有限维或无限维向量空间。托普利茨将线性代数的主要定理推广到任意体上的最一般的向量空间中.线性映射的概念在大多数情况下能够摆脱矩阵计算而引导到固有的推理,即是说不依赖于基的选择。不用交换体而用未必交换之体或环作为算子之定义域,这就引向模的概念,这一概念很显著地推广了向量空间的理论和重新整理了十九世纪所研究过的情况。 “代数”这一个词在我国出现较晚,在清代时才传入中国,当时被人们译成“阿尔热巴拉”,直到1859年,清代著名的数学家、翻译家李善兰才将它翻译成为“代数学”,一直沿用至今。 线性代数起源于对二维和三维直角坐标系的研究。 在这里,一个向量是一个有方向的线段,由长度和方向同时表示。这样向量可以用来表示物理量,比如力,也可以和标量做加法和乘法。这就是实数向量空间的第一个例子。 现代线性代数已经扩展到研究任意或无限维空间。一个维数为 n 的向量空间叫做 n 维空间。在二维和三维空间中大多数有用的结论可以扩展到这些高维空间。尽管许多人不容易想象 n 维空间中的向量,这样的向量(即 n 元组)用来表示数据非常有效。由于作为 n 元组,向量是 n 个元素的“有序”列表,大多数人可以在这种框架中有效地概括和操纵数据。比如,在经济学中可以使用 8 维向量来表示 8 个国家的国民生产总值(GNP)。当所有国家的顺序排定之后,比如 (中国, 美国, 英国, 法国, 德国, 西班牙, 印度, 澳大利亚),可以使用向量 (v1, v2, v3, v4, v5, v6, v7, v8) 显示这些国家某一年各自的 GNP。这里,每个国家的 GNP 都在各自的位置上。 作为证明定理而使用的纯抽象概念,向量空间(线性空间)属于抽象代数的一部分,而且已经非常好地融入了这个领域。一些显著的例子有: 不可逆线性映射或矩阵的群,向量空间的线性映射的环。 线性代数也在数学分析中扮演重要角色,特别在 向量分析中描述高阶导数,研究张量积和可交换映射等领域。 向量空间是在域上定义的,比如实数域或复数域。线性算子将线性空间的元素映射到另一个线性空间(也可以是同一个线性空间),保持向量空间上加法和标量乘法的一致性。所有这种变换组成的集合本身也是一个向量空间。如果一个线性空间的基是确定的,所有线性变换都可以表示为一个数表,称为矩阵。对矩阵性质和矩阵算法的深入研究(包括行列式和特征向量)也被认为是线性代数的一部分。 我们可以简单地说数学中的线性问题——-那些表现出线性的问题——是最容易被解决的。比如微分学研究很多函数线性近似的问题。 在实践中与非线性问题的差异是很重要的。 线性代数方法是指使用线性观点看待问题,并用线性代数的语言描述它、解决它(必要时可使用矩阵运算)的方法。这是数学与工程学中最主要的应用之一。

5,线性代数知识框架

你可以参照下面得纲要,线性代数 第一章:行列式 考试内容: 行列式的概念和基本性质 行列式按行(列)展开定理 考试要求: 1.了解行列式的概念,掌握行列式的性质. 2.会应用行列式的性质和行列式按行(列)展开定理计算行列式. 第二章:矩阵 考试内容: 矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵等价 分块矩阵及其运算 考试要求: 1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质. 2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质. 3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵. 4.理解矩阵的初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法. 5.了解分块矩阵及其运算. 第三章:向量 考试内容: 向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量空间以及相关概念 n维向量空间的基变换和坐标变换 过渡矩阵 向量的内积 线性无关向量组的正交规范化方法 规范正交基 正交矩阵及其性质 考试要求: 1.理解n维向量、向量的线性组合与线性表示的概念. 2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法. 3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩. 4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系 5.了解n维向星空间、子空间、基底、维数、坐标等概念. 6.了解基变换和坐标变换公式,会求过渡矩阵. 7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法. 8.了解规范正交基、正交矩阵的概念以及它们的性质. 第四章:线性方程组 考试内容: 线性方程组的克莱姆(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 解空间 非齐次线性方程组的通解 考试要求 l.会用克莱姆法则. 2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件. 3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法. 4.理解非齐次线性方程组解的结构及通解的概念. 5.掌握用初等行变换求解线性方程组的方法. 第五章:矩阵的特征值及特征向量 考试内容: 矩阵的特征值和特征向量的概念、性质 相似变换、相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及相似对角矩阵 考试要求: 1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量. 2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法. 3.掌握实对称矩阵的特征值和特征向量的性质. 第六章:二次型 考试内容: 二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性 考试要求: 1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变化和合同矩阵的概念 了解二次型的标准形、规范形的概念以及惯性定理. 2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形. 3.理解正定二次型、正定矩阵的概念,并掌握其判别法 概率与统计 第一章:随机事件和概率 考试内容: 随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验 考试要求: 1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系与运算. 2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式. 3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法. 第二章:随机变量及其分布 考试内容: 随机变量 随机变量的分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布 考试要求: 1.理解随机变量的概念.理解分布函数 的概念及性质.会计算与随机变量相联系的事件的概率. 2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布 、几何分布、超几何分布、泊松(Poisson)分布 及其应用. 3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布. 4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布 、指数分布 及其应用,其中参数为λ(λ>0)的指数分布的概率密度为 5.会求随机变量函数的分布. 第三章:多维随机变量及其分布 考试内容: 多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续性随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布 考试要求: 1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质. 理解二维离散型随机变量的概率分布、边缘分布和条件分布;理解二维连续型随机变量的概率密度、边缘密度和条件密度.会求与二维随机变量相关事件的概率. 2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件. 3.掌握二维均匀分布,了解二维正态分布 的概率密度,理解其中参数的概率意义. 4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布
文章TAG:大一一线线性代数思维大一线性代数思维导图

最近更新

  • 编程软件下载手机版,有哪些手机APP可以编程软件编程软件下载手机版,有哪些手机APP可以编程软件

    有哪些手机APP可以编程软件2,在手机上使用的编程软件3,谁知道手机上有没数控编程仿真的软件4,有没有手机上用的编程软件5,java手机软件1,有哪些手机APP可以编程软件netbean手机目前还没有这.....

    问答 日期:2024-08-27

  • 禾匠小程序商城 启用插件,禾量小程序商城入驻禾匠小程序商城 启用插件,禾量小程序商城入驻

    4.配置小程序商城:配置小程序管理后台,包括商品分类,商品信息,价格,库存。木鱼店专注于新零售小程序解决方案,为传统门店商户提供商城小程序生产线,丰富的小程序功能帮助商户实现数字化转型,.....

    问答 日期:2024-08-27

  • 时序数据库都有哪些表,db2 查询数据库里都有哪些表的SQL语句 急时序数据库都有哪些表,db2 查询数据库里都有哪些表的SQL语句 急

    db2查询数据库里都有哪些表的SQL语句急selecttabnamefromsyscat.tableswheretabschema=currentschema;//获取当前模式下面的所有用户表2,oracle中system有哪些表system是数据库内置的一.....

    问答 日期:2024-08-27

  • mysqli语法,SQL语法大全有哪些mysqli语法,SQL语法大全有哪些

    SQL语法大全有哪些2,PHPmysqli查询语句3,SQL语法4,SQL语句语法5,PHPmysqli查询语句1,SQL语法大全有哪些创建、查询、更新就这么三大块2,PHPmysqli查询语句如果$query为空时,你再用mysql_fetch.....

    问答 日期:2024-08-27

  • 国际先进数据库有哪些,面向对象数据库有哪些国际先进数据库有哪些,面向对象数据库有哪些

    面向对象数据库有哪些2,谁能给我一个国外知名的数据库像中国知网一样的3,oracle和mysql的区别4,MySQL与PostgreSQL比较哪个数据库更好5,该选择哪个开源数据库哪一个更好1,面向对象数据库有.....

    问答 日期:2024-08-26

  • 越狱安装插件卸载,苹果越狱后怎么安装插件越狱安装插件卸载,苹果越狱后怎么安装插件

    插件不能卸载也不能安装,越狱一部手机插件-1/不能!如何卸载。卸载也卸载不能安装插件看系统是否支持,其他的插件都可以安装,苹果越狱手机安装插件出现512怎么办?电脑怎么用-1-2插件1、-ipho.....

    问答 日期:2024-08-26

  • 股市在苹果5哪个程序中股市在苹果5哪个程序中

    苹果如何开手机股?一、基本概念股票是股份公司发行的所有权凭证。是股份公司向各类股东发行的有价证券,作为取得股息、红利的持股凭证,哪个软件最好?"股市"此应用程序程序允许用户查看选定.....

    问答 日期:2024-08-26

  • 植保数据库有哪些,农经权的数据库建库平台软件有哪些植保数据库有哪些,农经权的数据库建库平台软件有哪些

    农经权的数据库建库平台软件有哪些2,农科常用的外文数据库有哪些有好多数据库都不知道该进去哪个里3,国外的植物物种信息数据库有哪些4,greenplum是什么数据库5,中国植物图谱数据库收录的.....

    问答 日期:2024-08-26